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The statistical mechanics of a mixture of hard-core ions and dipoles in one 
dimension, namely, the one-dimensional version of the so-called nonprimitive 
model of an electrolyte, is considered by stressing the effect of the charge-dipole 
interactions and the hard-core repulsions on the thermodynamics and, 
especially, on the many-body functions of the systems. The adaptation of 
Baxter's generating function technique to this model lets us express the 
thermodynamic and structural functions in terms of a non-Hermitian 
generalized Hill-type Hamiltonian. The eigenvalues and eigenfunctions of this 
differential operator yield, in closed form, the n-body correlation functions in 
the bulk and near the container's walls. We also comment on the screening of 
the electric fields by the system ions and study the Donnan equilibrium when 
one of the ionic species in the mixture cannot diffuse through a semipermeable 
membrane. 

KEY WORDS: One-dimensional systems; non-nearest-neighbor forces; 
many-body functions; nonprimitive electrolytes. 

1. I N T R O D U C T I O N  

Exactly solvable models of interact ing particles in one dimension are good 

"laboratories" in order to check approximate  theories designed to describe 

their more  realistic three-dimensional  analogs/~/  Obviously,  one-dimen-  
sional models are, in general, physically poorer  than their three-dimen- 

sional counterparts .  Thus, the Van Hove theorem (2) establishes that no 
phase t ransi t ions can occur in one d imens ion  for many-body  systems with 

pairwise nons ingu la r  forces of finite range. For  forces of infinite range, 
however, the possibility of first-order t ransi t ions remains open. (3'4) 
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Classical one-dimensional Coulomb systems, though belonging to this 
last class (of systems), do not show phase transitions. This was conjectured 
by Edwards and Lenard ~5/for mixtures of point charges of opposite sign, 
and demonstrated by Kunz (6) for point charges of the same sign in a 
neutralizing background (the one-component plasma). Despite the lack of 
phase transitions, classical Coulomb systems in 1D still show many 
interesting aspects that deserve further study. Moreover, they are among 
the few known examples of exactly solvable many-body interacting models 
with non-nearest-neighbor forces. 

The calculation of the many-body correlation functions for systems 
with non-nearest-neighbor forces is in general a nontrivial problem. The 
correlation functions for the one-component plasma (OCP) of point 
particles were obtained with different techniques by Baxter (7) and later by 
Kunz. (6) Baxter also use his method to obtain the correlations in a mixture 
of point charges of opposite sign in 1D, (7) a problem previously considered 
by Edwards and Lenard by means of a functional integral technique. (5) 

In 3D, the Coulomb force between point charges of opposite sign is 
unbounded at small distances. In order to avoid this singularity, a harsh 
repulsive term is usually added to the pair potential. In 1D, this pole does 
not exist. However, if the one-dimensional systems are to be used as 
"laboratories" for approximations to be applied in 3D, it is natural to 
include an equivalent repulsive term in the one-dimensional pair potential. 
The statistical mechanics in 1D of Coulomb particles with hard core was 
first considered by Baxter, ~8) who calculated the thermodynamics of the 
one-dimensional version of the primitive model of an electrolyte (PME), 
namely a mixture of charged hard rods in the line. 

The PME mimics electrolytic solutions, considering the solvent as 
continuous. A more realistic model takes the solvent as a new discrete 
component. In the so-called nonprimitive model of an electrolyte (NPME), 
the solvent is modeled as hard spheres with an imbedded dipole. The 
corresponding version in 1D is a mixture of hard rods with opposite 
charges (ions) and hard rods with dipoles (the solvent). It should be 
pointed out here that, unlike the one-dimensional PME (where hard 
rods are not necessary for the system's stability), in the one-dimensional 
NPME the lack of hard repulsions makes the system unstable/9t 

In general, the presence of hard-core interactions in systems whose 
particles interact via non-nearest-neighbor forces complicates the evalua- 
tion of the correlation functions even more. For charged hard rods in a 
neutralizing background (the OCP with hard core), such an evaluation 
is possible for the one (1~ and two ( l l )-body correlation functions by 
extending the analysis Kunz has done for the OCP of point particles. (6) 
For the PME in 1D, Baxter suggests the possibility of evaluating the 
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correlation functions by applying the same technique he employs for the 
mixture of point charges of opposite signJ s) 

In this work we use Baxter's method for studying the correlations of 
the NPME in 1D. In a previous paper ~j2) we exactly solved the system's 
thermodynamics and confirmed the necessity of the hard cores in order to 
avoid unstabilities. Here we are mainly interested in the many-body func- 
tions, but we also discuss some other aspects related to the thermodynamic 
behavior of the system. 

In the next section we present the one-dimensional version of the 
NPME and define a hierarchy of generalized canonical and grand- 
canonical functions. These many-body functions are the basis of our 
description of the system's thermodynamics and structure. Each of the 
generalized grand-canonical functions is written in terms of an abstract 
operator which satisfies a difference-differential equation, whose solution 
[Eq. (37)] is the main result of this paper. 

The main thermodynamic results are summarized in Section 3. We 
stress the effect of external electric fields on the thermodynamic magnitudes 
and briefly discuss how the electric fields inside the fluid are shielded by the 
mobile charges. Section 4 is the paper's core. There we use Eq. (37) in order 
to evaluate the many-body correlation functions in two different situations: 
far enough from the walls (where the system is translational invariant) and 
near them (where it is inhomogeneous). In Section 5 we apply the results 
of the previous sections to study the Donnan equilibrium when one of the 
charged species cannot diffuse through a selective membrane dividing the 
system's container. 

The operators associated with the generalized functions are written in 
Eq. (37) in terms of the eigenvalues and eigenfunctions of a Hill-type dif- 
ferential operator. We devote Section 6 to study its characteristic value 
problem. We particularly consider the simplest case of detailed charge 
balancing, for which the solution is expressed in terms of continued 
fractions. In the especially simple case of point particle at high tem- 
peratures, the generalized Mathieu operator reduces to the harmonic 
oscillator Hamiltonian. Fully analytic expressions are obtained in this 
particular case, as is shown in Section 7. 

2. NONPRIMITIVE ELECTROLYTE IN 1D 

2.1. The System 

Let us consider the nonprimitive model for electrolytes in 1D. (12~ 
The system is a mixture of s species ;s-1  constitute the solute and the 
remaining one is the solvent. All particles in the mixture are hard rods and 
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we assume for simplicity that all of them have the same length b. The ions 
of species ~ (~= 1,..., s - 1 )  have a point charge of strength Z~q in the 
hard-rod center, where q is the unit charge and Z~ the eleetrovalence. The 
solvent hard rods have a dipole of moment #. 

The particles are free to move along the segment [0, L]  on the x axis. 
We assume that they are subject to the electric field generated by two point 
charges + Q and - Q  placed at the extremes x = -b /2  and x = L + b/2. 

Denote by No (~ = 1 ..... s) the number of particles of species ~, and by 
x~, (i = 1,..., N~) the position of the ith particle of species ~. The configura- 
tion of the solvent particles is given by the position and the orientation of 
the point dipole. The orientation of the ith dipole is given by a scalar ei, 
which can take the values + 1 or - 1 .  

The basic long-range interactions are derived from the Coulomb 
potential ~b(x), which is solution of the one-dimensional Poisson equation 

d2~(x) 
dx 2 -6 (x )  (1) 

Explicitly, the pair interactions in the model are 

~b~(x~,; x~j) = Go (a, y = 1,..., s -  1, s) (2a) 

for Ix~i-x~jl <b, and 

~(x=,;x,~j)=�89 (~, 7 = 1,..., s -  1) 

~b~s(X~,; x~ej)= �89 x~ ) / l x~ -  Xs~[ (o~ = 1,..., s - 1) 

q~(x~e~; Xsjej) = 0 (2b) 

for Ix~,- x~l > b. 
The hard-core condition (2a) imposes a restriction on the number of 

particles, 

b ~ N~<~L (3) 
~ = 1  

Besides for this steric restriction, we consider, according to Baxter's 
technique, (7'8) that N~ is arbitrary. To ensure the overall electroneutrality 
of the system, the total charge - q a ,  where 

s 1 

a = - ~ Z~N= (4) 

is fixed at x = L. The inclusion of this extra charge is equivalent to 
assuming that the system is in contact with an infinite reservoir which 
exchanges ions with it. Clearly the system plus the reservoir is globally 
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electroneutral. In the case of interest, however, the system by itself must be 
electroneutral: 

(5) 

Following Baxter, (7) we will reach condition (5) at the end of the 
calculations in a somehow artificial manner: a term containing a new 
variable t is introduced in the expression of the total potential energy in 
such a way that by integrating with respect to t, the integral representation 
of the Kronecker delta 6~,o appears in the grand-canonical functions. 

We denote by <b{s=} the potential energy for an arbitrary composition 
{N~} (e = 1,..., s -  1, s) of the system, which in general will not be neutral. 
~/x~} is the sum of four contributions: (i) the pair interactions among al! 
possible pairs of particles, (ii) the interaction between each particle and 
charges _+Q, (iii) the interaction between each particle and the extra 
boundary charge -qo-, and (iv) the t-dependent term which contains the 
system electroneutrality. We have 

1 s - - 1  N~N~  1 s 1 N : N s  

cCy c ~ y ]  c~ = 1 c% 

1 Us 
+ 2 s,~+ qs,,(Xsei; x+efl 

s 1 N~ N s 

+ ~, ~Z~qQIL-x~,[+#Q ~ e~ 
~ =  1 cq i = 1  

1 z s -  1 Ne 1 Ns 

+~q ~ ~ 2 Z :  IL-x:,l  +~ql~a ~ ei 

- qaikTt (6) 

The t-dependent term can be interpreted as the interaction of the 
system ions with an imaginary point dipole of moment i2kTt located inside 
the reservoir (x > L). Here i = , f -  1 is the imaginary unit, k the Boltzmann 
constant, and T the absolute temperature. The explicit dependence of the 
potential on L and t is 

~iO {N~}(L , t) = �89 + qQaL - ik Taqt 

+ terms of zeroth order in L and t (7) 

When exp[--~(N=~(L, t)/kT] is integrated over t between - z  and 7r, 
we get 

f~ exp(iqcrt) =2~6o.o dt (8) 
7r 

which is equivalent to the electroneutrality condition (5). We then obtain 
the thermodynamic and structural functions of interest, such as the parti- 
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tion and the correlation functions for the electroneutral system, by first 
considering q~{N,} arbitrary and eventually integrating over t. 

2.2, Generalized Grand-Canonical Functions 

We proceed to define a set of auxiliary functions which are functionals 
of ~{N~}. 

Consider that n~ (c~ = 1,..., s -  1, s) particles are kept fixed. Define the 
generalized canonical functions S{N,}; {,~} : 

S{N~},{no}(L, t, Q; x/~}e ns) 
s 1 

{e~N,-,,~} \ kT J (9) 

where we use the compact notation x {nd for the position of all the root 
particles and dx {N~ n'} for the integration over all field particles. Further- 
more, e"' denotes the orientation of all the fixed dipoles and the sum is over 
all possible orientations of the free dipoles. 

Following Baxter, we obtain a recurrence relation for S{N~};{,~} by dif- 
ferentiation with respect to L. We must thus consider the possibility of L 
being less than some or all of the fixed particle coordinates x {"'}, although, 
of course, the functions of interest will be evaluated only when L is greater 
than all them. 

In order to take that possibility into account, the summations in 
Eq. (6) include all the field particles, but only the root particles which lie 
between 0 and L. 

Differentiation of S{N~}; {~} with respect to L gives 

~S{N~};(n~}(L, l, Q; x{"~}e ")  

OL 

= ~ exp(iZ~t)exp "c~t 2. +itl-~. 
? = 1  

XS{N~ ~},;{~}(L-b, t-Q;x{"~}e ~') 

0 
+ 2 c o s ( ~ c ~ .  + i ~ ) e x p ( z ~  2- + i ~ / ~ . )  

X S { N  ~ ~},;{,,}(L-b, t, Q;x  {n=} e ~') 

z (g  2 ~1~? ) 
+; -~. +i~N. S{N=};{,~}(L,t,Q;x{"=}e ' ') (10) 
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Here {N~ - 1 }y means that we must eliminate a particle of type 7 from the 
set of mobile particles. We have further defined 

"c = q2b/2kT; ~: = # q / k T  

t 1 = qQb/kT;  ~ = p Q / k T  
(11) 

Equation (10) is a difference-differential equation for the generalized 
canonical function S{N~}:~}. 

Since the definition of S{N=~;{,~} depends on the number of fixed 
particles whose coordinates are smaller than L, we see that it is a function 
of L with discontinuities at the position of each fixed particle. Therefore, 
for L = xyj (7 = 1,..., s - -  1, s; j = 1, n~), we have the boundary conditions 

t im S{N=};{n~}(L=xy-I-~, t, Q; x{"~}e "~) 
a ~ 0  

=K~JQmoS{N_I}~,;{r ,  ~ , } ~ ( L = x v - b - a , t , Q ; x { " ~ } e  ",) (12) 

where 

2 a ) 
K~ = exp(iZ~ t) exp r ~-)5" + i t /~ -  , 

K s = K s ( e a ) = e x p [ , ( r c ~ t .  + i~) ]  exp 

(7 = 1,..., s - -  1) 

 SY" +i" 57 

(13) 

If the fixed particle is a dipole, Ks depends on its orientation ej. 
We also have the normalization condition 

S{N,,};{n~}(L = o--,  l, Q; x{"~}C ') = {5{N~} ; {n:~} ~50, {n~} (14) 

From the generalized canonical functions we can define the 
generalized grand-canonical functions: 

f{no}(L, t, Q; x{'~'}e '~') 

= (0~: S{N=};{n~}( , t, Q; x{"~}e ns) (15) 

where a)~ is a positive parameter which will be later identified with the 
fugacity of particles of species c~. Here the compact notation {N~}/> {no} 
means that the sums are over N, ~> n~ (~ = 1,..., s). The sums must also be 
limited to those sets {N~} that satisfy the condition (3). 
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In terms of these new functions, Eqs. (10), (12), and (14) yield the 
following results. 

(i) Between fixed particle positions 

-~ f(~=}(L, t, Q; x{"~}e "s) 

=Hlf(~,)(L-b,t,Q;x{"~le~s)+H2f{n~l(L,t,Q;x~;e '~) (16) 

where 

s - - I  

H~= ~ og~K~+~o~EK~(e= 1 ) + K s ( e =  - 1 ) ]  (17) 

H2 b \~ t  2 + i  - (18) 

(ii) Across the position x~ of a fixed particle 

f(,a}(L, t, Q; x('a}e~')=Kvf{,a i t ( L - b ,  t, Q; x( '~-~le ~') (19) 

where x {"a 1/ means that we have eliminated the coordinate x~ from the 
set x {"al. 

(iii) A t L = 0  

fo(L = 0 - ,  t, Q ) =  1 (20) 

We will later see how the functions fo and f~n~/ give the grand- 
canonical partition function ~(L,Q) and the {n~}-body correlation 
functions g{n,/(Q;x{n~)e",). Now we obtain f~n,l(L, t, Q; x("'~e '~) from 
Eqs. (16)-(20). 

The generalized grand-canonical functions fr can be written in 
terms of the mean value of an operator f{ ,~ ,  using the formalism of 
operators and vectors in Hilbert space: 

f 
~ 

f{~.)(L, t, Q; x{" '}e~)-  - (tlf~.~)[t') dt' (211 

where the kets It) represent the eigenvectors of the operator i with 
continuous spectrum te  [ - ~ ,  g]:  it t )  = tit). 

Equation (16), with boundary conditions (19) and (20), also holds in 
operator language. To solve it for the operator f~n~), we assume that the 
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positions of the fixed particles (without considering to which species they 
belong) are ordered 

x r < - . .  < x 2 < x l  ( r =  ~ n~) (22) 
ez=l 

Furthermore, we take into account condition (3). This condition limits 
the number of particles between fixed particles or between the fixed particle 
located at xl (at xr) and the container's right (left) wall. Therefore the 
operator f{n~} is formally given by 

(~,,)- 
f{,~}= ~ - - ~ .  [ ( L - x l ) - n b ] " O [ ( L - X l ) - n b  ] .B  

n=0 

k=O 

with 0 the Heaviside step function and 

r--I  
 =-kl j=~ ~,=o kj! I - ( x j - x j + ' l - ( ~ J + l ) b ] ~  

x O[(xj- xj+ 1) - (kj + 1)b]./s (24) 

Here K~ (7 = 1 ..... r) are operators which, in t-representation, yield Eq. (13). 
Using the operator/3 __- - id. /di  we have 

K~ = exp(iZTi ) exp[ -r( /5 + Q/q)2] exp(rQ2/q2) for ions 

k~(ej) = exp[ - ej~c(/3 + Q/q)] exp[ - z ( P  + Q/q)2] (25) 

x exp(zQZ/q 2) for dipoles 

In Eqs. (23) and (24), the operator H" is defined by 

B t ' ~  /~1 "~- m2 e x p ( b H ' )  (26) 
where/q'  satisfies 

I-exp(b/-t') 39~{,~}(L - b) = f{n~}(L) (27) 

The operators H1 and H2 are defined so that, in the t-representation, they 
yield Eqs. (17) and (18). Therefore 

s--1 
fI1-= Z c%R~+oos[Rs(ej= 1)+Rs(ej= -1)3 (28) 

y=1 

B 2 = - ( r /b ) [P  2 + 2(Q/q)P] (29) 

822/61/5-6-14 
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We now consider that L - x 1  >nb. This condition implies that the 
container's "right wall" is far enough to disturb the bulk of the system 
(semi-infinite system). Then 

/~t~_/_~ ~- /~1 exp(-b/4)  + H2 (30) 

and 

/4" =/-) exp(b/~) (31 ) 

Equation (30) implicitly defines the operator H, which will play a 
central role in the remainder of the paper. In general it is non-Hermitian 
and can be spectrally decomposed into the form 

trYI= ~ T,~l em) ( Om{ (32) 
m 

where {lem)} and {[O.,)} denote biorthogonal vectors which satisfy 

IZIlem) = Tmlem) (33) 

and 

/4* [ ~ )  =Y~[0m) (34) 

respectively, with /4' being the Hermitian adjoint of the operator/~. The 
sum in Eq. (32) is, of course, over all the eigenvector indices. 

In the t-representation the (abstract) eigenvalue equation (33) yields 

(Hie -~b  + H2) era(t) = 7mOrn(t) (35) 

where H 1 and H2 are given by Eqs. (17)-(18) and (13), while era(t)= 
(tlCm>. 

The expansion of the abstract operator f{n~ corresponding to 
Eq. (32) is 

e ? m ( L  - x 1 ) 

mm'  

x ~ (?m'e~'b)k [ x , - kb ]kO[x r - k b ] ( ,~ m . I  
k=o k! 

(36) 

In the thermodynamic limit L ~ 0% N~ --, ~ ,  N j L =  p, = const, 
Eq. (37) yields 
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eeo(L xt) 

ra 

x ~ kt [ x ~ - k b ] k O [ x ~ - k b ] ( ~ / ~ J  (37) 
k = O  

where 7o represents the largest real eigenvalue of Eq. (35). 
For the thermodynamic properties we have {n~ } -= 0. Consequently, in 

the same way as we obtain Eq. (37), we deduce 

d y 0 ( L  + b)  

f~  l +7ob I~o)(r (38) 

3. T H E R M O D Y N A M I C S  

The thermodynamics of the system under study has been discussed in 
previous work. (12) Here we review some of the main results. 

The grand partition function is 

1 in S(L ,  Q) = ~ e -Q2L/2~r fo(L,  t, Q) dt 
lr 

- 2 z e  - e2L/2kr dt dt' ( t [ f0 l t ' )  (39) 
v - i t  -To  

Taking into account Eq. (38), we find for the bulk pressure 

P(Q) lira 1 
k T  = L ~ co -L In 2(L, Q) 

Q 2 

= ~o(Q) 2 k T  (40) 

The eigenvalue Yo is an analytic monotonic function of the thermo- 
dynamic variables. Then, from Eq. (40), we see that no phase transitions 
can occur for the ion-dipole mixture, a common feature with other one- 
dimensional Coulomb systems. (s,6) 

The operator H is an periodic function of t of period 2~ (we are here 
assuming that all the ionic electrovalences are + 1 or - 1 ). Then the eigen- 
vectors of Eq. (35) are Bloch wave functions 

q~m(t, Q) = (~m(t, O)e -i(o/q)t (41) 

where k = Q/q is the Bloch momentum and ~m(t, 0) (the zero-external-field 
eigenfunction) is a periodic function of period 2~. 
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Since the eigenfunctions must satisfy the periodicity condition 

C~m(t + 2~, Q) = Om(t, Q) (42) 

we see that relation (41) is valid for external fields that satisfy D = Q = nq, 
with n being an integer. In this case, the eigenvalues that correspond to the 
eigenvectors (41) satisfy 

Q2 
7m(Q) - = L~(0) (43) 

2kT 

The particle number density for different species is also given in terms 
of the maximum eigenvalue 

1 ~? ln~  
p~(Q)= lira ~co~ 

L ~ oo ~ ( . 0 ~  

~?70(Q) (44) 

According to Eqs. (43) and (44), we have for Q = nq (n E 77) 

Ap~ =- p~(Q) - p~(0) = 0 (45) 

The fact that densities are in this case the same either with or without 
the external field is a consequence of ionic screening. 

Since in general 7o(Q) - Q2/2kT is a periodic function of Q of period 
q, we see that not only the pressure [Eq. (40)] and the densities 
[Eq. (44)], but also other state functions are periodic in the external field. 
In particular, the average electric field 

Q - k T  07~ (46) 

is null for Q = nq, since it is zero for Q = 0. This means that charges which 
are multiples of the ionic charge are perfectly shielded. 

If the external charge Q is not a multiple of the ionic charge q, then 
the ionic screening is not perfect. In this case Eqs. (43) and (45) are no 
longer valid, and the system shows electrostriction. In any case the system 
structurally behaves as a dielectric, since ions tend to form neutral pairs. 
Screening requires the separation of a number of such pairs. Thus, only 
integral multiples of the ionic charges can be perfectly shielded. {13"14) 
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It should be noted that in real electrode-electrolyte interfaces, Q and 
q are always multiples of the elementary charge. Moreover, Q >> q, so that 
if we consider that Q is an integral multiple of q, there is no limitation of 
the real physical situation. This is implicit in our earlier work (12) and was 
explicitly used in Eq. (36) of that work. We also remark that, from the 
point of view of electrolyte theory, one is interested in those situations in 
which the system screens, because that is what happens in the real 
3-dimensional case. 

4. S T R U C T U R E  

We use the generalized {n~}-body functions to compute the correla- 
tion functions, which are given by 

g{,~}(x{,~}e,,~)=(I~I__ ~ L~(N~ Tn~)!'~ 
=l N~! / 

~ ~ S{N~};{n~}(L , t, Q; x{~)e "~) dt 

~n S{N~};o(L, t, Q)dt  

Thus, in the thermodynamic limit, we have 

g(.~)(x{.~}e~,) = is ( c o _ ~ ' ~ _ ~ d t ~ _ ~ d t  ' ( , t l f {~) l t ' )  

~=1 \Pc~/ f fL~dt~Lxdt '  (tlfolt') 

(47) 

(48) 

We now specialize to the bulk region and the region near the walls. 

4.1. Bulk C o r r e l a t i o n s  

Here we consider that all the fixed particles are far from the 
container's walls. We assume that the positions of the fixed particles satisfy 
Nb < x~ < ... < x2 < Xl < L -  Nb, where N = ~ 1 N~. Equation (36) gives 

e ' ~ ( L  - x l  ) e~m,xr 

?{n~}= E I~m) l+Tm b ( ~ m l J B l O m ' ) l + y m , b ( ~ t m ' j  (49) 
m m '  

In the thermodynamic limit, 

eYo(L x l )  e~OXr 

f~.~ = I~o) 1 +rob (~ofBl~0) 1 +rob (~ol (50) 

From Eq. (48) and taking into account Eq. (38), we have 

((O:L~n~ eTO(xr- xl) e -  ~ob 
g{"}(x("~)e's)= 12I \ -~-~J i+~o/~ (O~176 (51) 

~=1 
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It is seen that, like the thermodynamic quantities, the correlation functions 
are periodic functions of the external field of period q. 

Consider the singlet and pair correlation functions. Since the expres- 
sions for ions and dipoles are similar, we will omit (in the arguments) the 
dipole orientation e% though it is understood that for dipolar correlations 
these variables must be present. 

The one-body correlation function is 

g~(xl) (for all values of xl) (52) 

so that the bulk density is 
(J)~e --7ob 

p~= <qJ0lR~l~o> (53) 
1 + 7ob 

In the bulk region the one-body correlation function is translationally 
invariant. 

The pair correlation function is 
09 (D e Y~ eY~ xl) 

g~,(xlx2)- ~ ' (OolB~,l~bo> (54) 
p~p~ 1 + 7o b 

Here the operator/}~ is 

/~7=/s ~ (Hexp(b/4))k 
~=o k! [ ( x l - x R ) - ( k + l ) b ] ~  

x O[(xl - x2 ) -  (k + 1)b] R~ (55) 

In the t-representation the matrix element yeilds 

<g, ol/~1~o> 

= ~ [ ( x , - x g - ( k +  1)b]~O[(x_x~)_ (k  + 1)b] 
k=0 k! 

i" x dt tp*(t) K~(HebH)kK,~o(t) (56) 
g 

Using the spectral decomposition (32), the matrix dement can be 
written in the equivalent form 

(~me7mb ) k 
= ~  k ~  [ ( x ~ - x 2 ) - ( k + l ) b ] k O [ ( x ' - x ~ ) - ( k + l ) b ]  

mk 

x (@ol/~, [@m > (@ml R7 [~bO > (57) 
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where 

f 
ro 

<~ofk~l~m> = dt~/*(t) K~(~m(t) 
rc 

(58) 

Provided that (57) is absolutely convergent, for large Ix1-  x2], 

co~co7 e 27ob 

P~P'g~7(xlx2)" (1 +7ob) 2 (0ol k~/~l,~o> (58) 

Thus, the pair correlation function is a constant in the translational- 
invariant central region when Xl and x2 are far enough from each other. 

It should be noted that, for neutral hard rods (q = 0, ~ = 0)--say, for 
a Tonks gas(~5)--we recover the classical result of Salsburg et at., (~6~ 
previously found by Zernike and Prins. (~7) Using co~ = co7 = co = 7o e~~ and 
7o = p/(1-  pb), with p the total number density, we have 

p~ k)] k 
p2g(x,x2)=l_p b ~ [a(y~ e_a(y k,O(y_k ) 

k = O  

(60) 

where 

y = ( x t - x 2 - b ) / b ,  a=yob=pb/(1-pb) (61) 

Moreover, for b = 0, Baxter's result for point ions (7) is recovered from 
Eqs. (54) and (56), 

f~ p~p~ g~7(xl x2) = (n~co~, dt (~(t) K~e ~"-~~ - ~21K~Oo(t) 
- - 1T  

(62) 

where we consider that ~ko(t ) = ~bo(t), since, in this case, the operatyor H is 
self-adjoint. 

Using Eqs. (57) and (58), we can write the point particle correlations 
in the alternative form given by Edwards and Lenard(5): 

p~Pr g~(xl  x2) = ~ Bm,~Bm ,~ e-('~o-'em)(xl- x~) 
m 

(63) 

where 

f 
~ 

Bm,~=o~ dt~o(t) K~m(t) (64) 
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4.2. The Near-Wall Region 

We consider the one-body correlation function g~(x~) for values of x~ 
so that 0 <~ xl <~ Nb: 

~_~dt~_~dt ' <tlf, Ft'> 
p ~ g ~ ( X l )  = 09~ (65) 

f f  ~dt ~ dt' (tlfolt'> 

The relation between the eigenvectors of operators i and/3  is 

1 
<tl P> - (2~),/2 e iPt  (66) 

Thus, we see that Eq. (65) can be written 

<p=Olf~lP=O> p~ g~(x~) = co~ (67) 
< P = O l f o l P = O >  

In the thermodynamic limit, using Eqs. (23) and (24), we have 

p~ g~(xl) - 
go~e ~'~ T~ 

<OolP=O> 

x ~ <~'ol R~ 
k=O 

(H exp(bH)) k 

k !  
I P = 0 > F X l - k b ]  O[xl - kb ] 

( 6 8 )  

We are in a region that is not translational invariant and the one-body 
correlation function dependens on Xl. Furthermore, we observed that for 
xl ~ oe the bulk density (53) is recovered. 

The one-body correlations, when evaluated at x l = 0 ,  satisfy the 
contact value theorem. (18) To show this, we consider that, since 

/~2[P = 0 )  = ( -~-s ---s , P = 0 )  

= O I P = O >  (69) 

then 

H1 [ e x p ( -  bH) [P = 0 > = H I P  = 0 > (70) 

A t  x 1 = 0 ,  Eq. (68) yields 

p~g~(xsl = 0 )  =(z)~e -';~ <~o[ /r~ ] P = 0 >  
<0olP=O> 

(71) 
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Therefore, using Eqs. (28), (29), and (70) and defining 

Psgs(x=O)=Ps ~ g,(x=O;e) (72) 
e = + l  

we have 

p~g~(x=O)= (0~ 
7=1 ( 0 o l P = 0 5  

= 7o(Q) (73) 

and, using Eq. (40), 

Q2 
kT ~ p~gT(x=O)=P(oo)+-~- (74) 

7=1  

which is the contact values theorem for the ion-dipole mixture (19~ in 1D. In 
this last equation P(oe) denotes the pressure in the bulk far from the wall 
located at the origin. 

5. D O N N A N  E Q U I L I B R I U M  

In this section we consider that the electrolyte solution is in a 
container divided by a semipermeable membrane. The solvent and all the 
solute species, except one, can permeate through this membrane. We use 
the results of the previous section to study the one-dimensional Donnan 
equilibrium in this system. 

In order to simplify the notation, let us consider a mixture of just three 
ionic species, namely +,  - ,  and P ("protein") dissolved in the dipolar 
solvent S. All the components in the mixture can stay in the intervals 
[-(L2+b/2), -b/2] (side 1) and [b/2, L2+b/2] (side2) of the axis x 
except for ions of species P, which are constrained to be only in the side 2. 
Thus we are assuming that a Donnan membrane of width b is symmetri- 
cally located at x = 0. Although particles of species + ,  - ,  and S can 
permeate through the membrane, their centers cannot remain inside it. 

As before, all the particles are hard rods of length b. The solvent 
particles are dipoles of dipolar moment p. We assume that the cations and 
anions have point charge +q  and - q ,  respectively, while proteins P have 
a charge Zq. 

The system is subject to an external electric field generated by a charge 
Q = Q1 + Q2 located at x = 0 and two charges - Q 1  and - Q 2  placed at the 
container walls - (L1 + b) and L2 + b, respectively. 
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The whole system is neutral. Furthermore, in equilibrium each side of 
the membrane must be neutral by itself. We impose the electroneutrality 
condition in the same way as before: by means of a fluctuating charge 
ensemble. 

Suppose that there are M, m, n, and r particles of type P, + ,  - ,  and 
S, respectively. The numbers of particles in the two compartments  (M2 = 0, 
ml,  nl, r2) and (M2 = M, m2, n2, r2) must satisfy m~ + m2 = m, nl + n 2 = n, 
and rl +r2=r .  As in Section 2, we introduce the auxiliary charges -qo-~ 
and - q ~  with ~ r ~ = m l - n ~  and ~ 2 = Z M 2 + m 2 - n 2  at the points 
x = - ( L i  + b/2) and x = L 2 + b/2, respectively. 

Because of the nature of the charge-charge and charge-dipole interac- 
tions in 1D, we find that the two sides of the interface behave, from the 
electrostatic point of view, in a completely independent way. Moreover, the 
hard-core parts of particles located on both sides of the membrane do not 
interfere, hgecause they see a gap of length h at the membrane position. 
Thus, the total potential energy can be written as the sum of two separate 
contributions: 

cb ~ ~L " ~>,m2.2r2 (75) Mm2n2r2 t 1Qltl  L2Qztz)=Cb ~ (LIQltl) "JR (L2Q2t2) 

. . . . . . . . .  (c~= 1, 2) denotes the potential energy on side cc As in where I~ (L~Q~t~) 
Section 2, the variables t~ are introduced so that the container side ~ is 
electroneutral after we integrate the generating functions over the interval 

[-~,~J. 
We see from Eq. (75) that the grand-partition function factorizes, 

Zoo, . . . . . .  s(LiQ1; L 2 Q 2 ;  T ) =  ~-(1) ~L t~ T) =(2) ~L 'q T) (76) ~c~+ ~o_ oS t 1 ~ I  ~opo)tm_o~S% 2~:~2 

where 

1 e_Q2Lj2kr  ~ ~z 2(~)(L~Q~T)=-~-~ f d t f  dt ' ( t i f(o~'l t  ' )  (77) 
7Z 

co~ (c~ = P, + ,  - ,  S) are the fugacities of the protein, cation, anion, and 
solvent, respectively. 

The density profiles at each side of the membrane are 

i f _ .  dt ~"_.  d t '  ( t l f ~ ) ( x  - ( - )~bt2) i t ' )  
p (cO g(c~JfX] (78) 

o,  ,--,=co7 f~_.dt~._.dt, (tlf~o~tt ') 

where c~ = 1, 2 and 7 = +, - ,  S. The same relation with ~ = 2 and 7 = P is 
valid for particles P on side 2. On side 1 we have, instead, 

p (pl ) g (p1) ( x ) - 0 (79) 
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Using property (69), we have (~ = 1, 2) 

(~) (~) _ 
p~ g~ ( x -  ( -  fib/2) = 7(o')(Q~) 

~ = P ,  +,  ,S 

From this we obtain the sum rule 

(80) 

kr 2 ~ - k r  Z r y  o 7 , ~ - -  - -  

7 = P ,  + , - - , S  7 =  + , - - , S  

1 2 = H +  5(Q2 Q~) 

p~l)g~l)(x = -b/2) 

(81) 

where 

H = P 2 ( ~ ) - P I ( - ~ )  (82) 

is the osmotic pressure, with P~ the bulk pressure on side e. 
Equation (81) is the contact value theorem for the Donnan 

membrane. (2~ It can be written in the form given by Zhou and Stell(21): 

kTppg~,(x=~)=H+~[E2(x=O+)-E2(x=O )3 

+ kT ~ p., g~(x) dx 
y =  + , - - , S  oo 

(83) 

Here Vym(X ) is the particle-membrane interaction for the diffusible 
species 7, 

VTm(X) ---- {O  otherwise -b/2<x<b/2 (84) 

and E(X) is the electric field. 

6. T H E  C H A R A C T E R I S T I C  V A L U E  P R O B L E M  

We now consider the solution of the characteristic value problem 
associated with the operator H [Eq. (33) or, in the t-representation, 
Eq. (35)]. Because of Eqs. (41) and (43), we see that in the case Q/q= 
integer it is enough to solve the zero-field case. 

Here we restrict ourselves to the simplest nonprimitive model of the 
electrolyte, namely a mixture of two species ( + ,  - ) of charged hard rods, 
with electrovalences Z+ = - Z  = 1 and fugacities e)+ = o )  = ~oi (detailed 
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charge balance) in a solvent of dipolar hard rods. Thus, in the t-representa- 
tion, the opera tor /~  reads 

H = 2  co~cos(t)+COsCOS ~ .  e-Tbe ~(d2/a'2) +-bdt~. (85) 

This is a generalized Mathieu-type Hamiltonian. Because of the 
periodicity of cos(t), the eigenfunctions satisfy the boundary condition 
[-Eq. (42)] 

~m(t -~ 22) = ~b,(t) (86) 

We assume that the eigenfunctions of the operator H are expanded 

~bn(t)= ~ An, jcos(jt) (n=0, 1,...) (87) 
j = 0  

so that the coefficients A~,j satisfy a three-term recursion relation 

where 

and 

From Eq. (88) we find a 
eigenvalues 7n: 

Xb,  j +  1 - -  V n , j X n ,  j "~- Xn,  j - -  1 = 0 (88) 

xn,j = e J2~An, j (89) 

F~ ' - F ~ + ' = 0  

where F~ -)  and F~ +) are expressed as continued fractions: 

1 
F~- ) = Vj 1 

vj_l 1 
U j _  2 

Vj  3 . . . .  

(zj2/b + 7n)e~j 2 _ 2~os e ~.b cosh(~j) 
vn, j -  (90) 

(j) i C Ynb 

family of transcendent equations for the 

(91) 

1 
V j +  2 

Uj+  3 . . . .  

and 

Fj(. + ) m 

(92) 

(93) 
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Furthermore, from Eq. (88) we also have a recursion relation for the eigen- 
function coefficients (n = 0, 1, 2,...; j = 0, 1, 2,...) 

An, j_lr~(2j 1) (94) 
A,,,j 1 

v , , , j  - -  1 

U n , j  + 1 
1)n , j  + 2 . . . .  

Knowing the coefficients in the expansions of the eigenfunctions o f / t ,  
we can obtain directly the corresponding expansions of the eigenfunctions 
corresponding to the adjoint operator /4 ' :  

= ~ e *2A,,jcos(jt) (95) 
j = 0  

From Eqs. (91)-(95) and (90) it is seen that for b = 0  
�9 q 2  . 

y ~ 2cos cosh(~j) - 2 ~ j  2 (96) 

as j grows. This explicitly shows that for ~c r 0 the maximum eigenvalue is 
unbounded. 

7. THE P L A S M A  L IMIT  FOR POINT PARTICLES 

A mixture of point ions (b = 0) moving in a continuous medium has 
two well-defined regimes. (5'211 For small couplings, namely for small values 
of q2/2kT (high temperatures or small charges) the system behaves (from 
a thermodynamic point of view) as a charged plasma, whereas for strong 
couplings it is a neutral dipolar gas with a density half of the total density. 
It should be remembered, however, that despite the thermodynamic 
validity of the Debye-Hfickel theory, the system is structurally a dielectric�9 

We have just seen that when the solvent is modeled by an ensemble of 
point dipoles the eigenvalues are unbounded except for ~c ~ 0 (q--, 0 or 
T--, oo). Thus, the pressure grows without limit (Fig. 1) and the system is 
thermodynamically unstable. (12~ The physical reason for this behavior is 
that for finite temperatures an infinite number of point dipoles are drawn 
near the point charges, causing a sort of catastrophic solvation. 

In the plasma limit, operator (85) is written in abstract space 

H -  2o) i cos(i) + 2co S cos(i~:/3) - 22/32 (97) 

where 22 = z/b = q22kT is the ion-ion coupling parameter. 
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6, 

Z 

4. 

0.0 

oO 

, q =1.0 ; tL = 1.25 

. . . .  q=O.O ; /z = arbitrary 

x \ . . . . .  q=l.0; # =0.0 

% 

i,, I i 
0.5 1.0 1 5 

b 

Fig. 1. Typical behavior of the pressure 70 = P/kT versus the hard-rod length b for a non- 
primitive electrolyte in 1D. The remaining parameters are ~s = 1.5, o9, = 0.5, and 1/kT= 1.0 
(arbitrary units). 

We  a p p r o x i m a t e  

cos(f)  ~ ~" - f2/2 

cos ( ixP)  ~ ~" + tr 
(98) 

Therefore,  

171= -22fi2/c - ooif + 2(~oi + COs) ~" (99) 

where  the cons t an t  c is 

c =  (1 - 2ogs#2/kT) 1 

and  ] is the unit  opera tor .  
We  cons ider  the "ann ih i la t ion"  o p e r a t o r  

(100) 

1 
f = ~ [ (,Veto,)-1/2f + i(;4~o,)1/2F3 (101) 

and  the "c rea t ion"  o p e r a t o r  fit. t h e n / ~  is wri t ten in terms of  the "part icle 
n u m b e r "  o p e r a t o r  ti = fitfi: 

121= -(22o9i/c)1/2(2fi + ]) + 2(co, + ~Os)~" (102) 
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Since r~l~bn)=n I~bn), the characteristic value problem (33) gives the 
eigenvalues 

7n = -(22co~/c)1/2(2n + 1 ) + 2(co, + COs) (103) 

Thus, the system pressure is 

P 
/ ~ =  70 = 2(coi + cos)- (22co]c) 1/2 (104) 

Using Eq. (44), we further obtain the number densities 

and 

pi = 2p + = 2p = 2co~- �89 (105) 

Ps = 2COs - , ) ~ ( c o t )  1 /2  c(c - 1 )/2 (106) 

For the primitive model of electrolyte, Edwards and Lenard ~6~ found, 
in the small coupling (Debye-Hfickel) limit 2 ~ 1, 

Pi = 2 c o i -  l( )~2coi/e)l/2 (107) 

where e is the dielectric constant of the continuous solvent. Then we 
identify parameter c in Eq.(105) with the electrolyte-concentration- 
dependent dielectric constant: 

1 2cos/~ 2 
e = 1 - 2 c o s # 2 / k T  ~ 1 + k - - ~  (108) 

Comparison of this result with the dielectric constant of a (pure) gas of 
point dipoles at high temperatures (23) shows that the effect of the ion- 
dipole coupling is included in cos, which replaces the dipolar density in the 
pure dipolar gas formula. 

The osmotic pressure of the ions is given by 

H 
+ p  ) _  2~8(p + + p _ ) , / 2  (109) k----~= (p + 

where 2~ = ,~/,,fe. This expression has the form of the Debye-Hiickel 
osmotic pressure. 

8. REMARKS 

We have obtained the exact many-body functions for the one-dimen- 
sional version of the nonprimitive model of an electrolyte. This implies 
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considering systems of hard-core particles interacting through non-nearest- 
neighbor forces of infinite range. To this end, we have adapted Baxter's 
generating function technique in order to take into account the finite size 
of the particles. 

Because of the hard-core repulsions, the number of particles lying 
between each pair of root particles in the many-body functions is finite. As 
a consequence, the many-body functions are written as potential series with 
Heaviside step functions. In the point particle limit these series sum to 
exponential functions. 

The hard cores also cause the operator H associated with the system 
to be non-self-adjoint. A factor exp(-z/32) is responsible for this behavior. 
The eigenvalues of this operator are always bounded, in contrast with the 
point particle case, for which the presence of the dipoles produces the 
system's instability at any finite temperature and any dipole fugacity. 

When the system is subjected to the field generated by external 
changer + Q, it is seen that the thermodynamic and correlation functions 
are periodic functions of Q of equal period to the ionic charge q. In par- 
ticular, charges Q which are multiples of q are perfectly screened, so that 
the bulk system behaves as in the complete absence of external charges. 
However, from a structural point of view, the system behaves always as a 
dielectric. 
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